

CCS in Achieving Negative Emissions

Tim Dixon and Jasmin Kemper

IEA Greenhouse Gas R&D Programme

CCS Event, EU Pavilion

7 November 2016, COP-22

www.ieaghg.org

Mitigation Measures

More efficient use of energy

Greater use of low-carbon and no-carbon energy

Many of these technologies exist today

Improved carbon sinks

- Reduced deforestation and improved forest management and planting of new forests
- Bio-energy with carbon capture and storage

Lifestyle and behavioural changes

AR5 WGIII SPM

What are NETs?

Accelerated

chemical

eathering

Manufacturin

carbonate mineral

Virgin Earth Challenge

using silicate rocks

Direct air

CO₂ capture cap

NETs (negative emission technologies)

- **Bio-CCS/BECCS (bioenergy with CCS)** using biomass that has previously taken up CO₂ during growth to produce power/heat/fuels, then capturing and storing the emitted CO₂
- A/R (afforestation/reforestation) planting trees where previously (a) there were none or (b) they have been cut down
- DAC(S) (direct air CCS) capturing CO₂ directly from air
- EW/MC (enhanced weathering/mineral carbonation) spreading pulverised rock on land/water to take up CO₂ and form bicarbonate
- SOCS (soil organic carbon sequestration) storing CO₂ in soil through advanced farming methods, restoration and land creation
- **Biochar** adding burnt/torrefied biomass to soil for long term storage
- Ocean fertilisation adding Fe or N to accelerate CO₂ uptake by microorganisms for photosynthesis
- **Cloud/ocean treatment** (a) using alkalis to wash CO₂ out of the atmosphere, (b) using lime to absorb CO₂ from the oceans

NET potentials

Concept of Bio-CCS

Sanchez et al. 2014, courtesy of Nature

Net carbon balance

IEAGHG/Ecofys 2011, adapted from ecofriendlymag.com; grey denotes carbon of fossil origin. blue denotes carbon of biogenic origin)

Bio-CCS – brief status summary

Many studies conclude: Bio-CCS, incl. its CCS components, technically feasible as of today (TRL 3-7) [except microalgal biomass]

Perceived "double benefit": heat/power + negative emissions 5 operating Bio-CCS projects 0.1-1 MtCO₂/yr (all EtOH, 3 for EOR, 4 in US, 1 rather Bio-CCU), several more underway

GHG accounting: only 2006 IPCC GLs, CDM/JI, Ca LCFS and EU RED/FQD cover Bio-CCS Plenty of research on public perception of CCS but very limited and contradictory on Bio-CCS

 Bio-CCS generally has lower profile than Fossil-CCS Main drivers/barriers for Bio-CCS:

 CO₂/NG price, infrastructure/clusters, sustainable feedstocks, public perception

Global Bio-CCS potential

Negative emissions potential for Bio-CCS

Technical potential (CO2 stored when exploiting the full biomass potential)

- Technical potential (negative GHG emissions)
- Realisable potential (negative GHG emissions)
- Economic potential (negative GHG emissions)

IEAGHG/Ecofys 2011

Negative emissions potential for biomethane routes

- Technical potential (negative GHG emissions)
- Economic potential (negative GHG emissions)

IEAGHG/Ecofys 2013

Accounting frameworks

Scheme	CCS	Biomass growth/ harvesting/ combustion/ processing	dLUC/iLUC	Life cycle emissions	Negative emissions
2006 IPCC GLs			\sim	\checkmark	\sim
EU ETS			X	X	X
EU RED/FQD			\sim	\checkmark	
US GHGRP			X	X	
California ETS	X		X	X	
California LCFS				V	1
Australia CPM [#]			X	X	X
UNFCCC KP's CDM/JI	~	\checkmark	\checkmark	V	

Note that the Australian Senate repealed the CPM on 17th July 2014, taking effect from 1st July 2014. The repeal has no effect on entities' reporting obligations under the NGER.

Bio-CCS in energy / water / food nexus

- Competition between food and bioenergy crops
- Shift of GHG/CO₂ emissions from one sector to another ("carbon leakage")
- Impact of large-scale biomass infrastructure, trade, and supply chains
- Impact of climate change on crop yields
- Water footprint of Bio-CCS systems
- Effects of increased fertiliser use
- Land availability and lock-in
- Land use change (LUC) impacts
- Biomass sustainability

Main nexus concerns

Conclusions

Ability of Bio-CCS to deliver negative emissions important to achieve climate mitigation targets

Majority of research suggests bioenergy potential of ~100 EJ/yr and Bio-CCS potential of ~10 GtCO₂/yr

Costs of Bio-CCS comparable to Fossil-CCS, in the region of 60 – 250 \$/tCO₂

Several projects underway but lots more needed to build up confidence

Policy, regulations and financial instruments for Bio-CCS need development

Bio-CCS deployment will hinge on case-specific details, with sustainable biomass supply likely to be the linchpin

Nexus-approach required due to complex sustainability issues

Thank you, any questions?

Contact : jasmin.kemper@ieaghg.org

www.ieaghg.org

- www.ieaghg.org
 - www.linkedin.com/groups/IEAGHG-4841998
 - https://twitter.com/IEAGHG
 - www.facebook.com/pages/IEA-Greenhouse-Gas-RD-Programme/112541615461568?ref=hl