

WHY CCS MITIGATION IS VITAL TO MEET CLIMATE GOALS

Mark Bonner, Global Lead – International Climate Change COP 22, 7 November 2016

Cover improve Overlaphing the Overst Continue facility langted at Chall, Costford mean Fact Contrate surger. All ante language and ideal by Chall

- We are an international membership organisation.
- Offices in Washington DC, Brussels, Beijing and Tokyo. Headquarters in Melbourne.
- Our diverse international membership consists of:
 - o governments,
 - o global corporations,
 - o small companies,
 - \circ research bodies, and
 - o non-government organisations.
- Specialist expertise covers the CCS/CCUS chain.
- www.globalccsinstitute.com

- 1. Cost (competitive)
- **2.** Application industrial and power / CO_2 and non- CO_2
- 3. Economic cost (least)
- 4. Scale of mitigation
- 5. Available
- 6. Retrofit
- 7. Negative emissions
- 8. Resource optimisation

Inevitability of decarbonisation and net zero emissions

Source: (Intergovernmental Panel on Climate Change, 2014) page 20; graph GCCSI

- Cumulative carbon budget (forever) for $2^{\circ}C = 2,900 \text{ GtCO}_2$ -e
 - 1GtCO₂-e is about equal to 40 years of emissions from 6 x 600MW coal plants
- Total remaining budget in 2011 = 1,100 GtCO₂-e
- Annual (anthropogenic) emissions ~50 GtCO₂-e (2010)
 - About three times the current mass of the human population (300Mt)
- At current emissions, budget is consumed in <23 years (2039)

CCS is critical in a portfolio of low-carbon technologies HELE is not sufficient – only with CCS

CCS contributes 12% of cumulative reductions required through 2050 in a 2DS world compared to 'business as usual'

Source: IEA, Energy Technology Perspectives (2015).

Mitigation costs more than double with limited CCS

*Percentage increase in total discounted mitigation costs (2015-2100) relative to default technology assumptions - median estimate

Source: IPCC Fifth Assessment Synthesis Report, Summary for Policymakers, November 2014.

Effect of current pledges and policies

- ** Greater than 66% chance of staying within 2°C in 2100. Median and 10th to 90th percentile range. Pathway range excludes delayed action scenarios and any that deviate more than 5% from historic emissions in 2010.
- *** Greater than or equal to 50% chance of staying below 1.5°C in 2100. Median and 10th to 90th percentile range. Pathway range excludes delayed action scenarios and any that deviate more than 5% from historic emissions in 2010.

Source: http://climateactiontracker.org/global.html

CCS is under-represented in the INDCs

[A] INDCs CITING CCS		GHG SHARE	MITIGATION DETAILS					
UN GROUPING	COUNTRIES	%	UNCONDITIONAL	CONDITIONAL	BASELINE	END DATE		
African States	EGYPT	0.6%	none listed	na	na	na		
	MALAWI	0.0%	 -0.7tCO2 per capita 	na	BAU	2030		
	SOUTH AFRICA	1.4%	Peak	na	na	2025		
Asian States	BAHRAIN	0.1%	none listed	na	na	na		
	CHINA	26.0%	-60%	-65%	/GDP (2005)	2030		
	IRAN (ISLAMIC REPUBLIC)	1.7%	-4%	-12%	BAU	2030		
	SAUDI ARABIA	1.5%	130MtCO2 per annum	na	na	2030		
	UNITED ARAB EMIRATES	0.5%	none listed	na	na	na		
Umbrella Group	CANADA	1.4%	-30%	0%	2005	2030		
	NORWAY	0.1%	-40%	0%	1990	2030		
	TOTAL	33.4%						
IB1 INDC PRESENTATIONS @UNFCCC SB42 (JUNE 2015) REFERENCING CCS								
Latin America & The Caribbean States	MEXICO	1.3%	-22%	-40%	BAU (2013)	2030		
African States	MOROCCO	0.2%	-13%	-32%	BAU (2010)	2030		
	TOTAL	1.5%						
	34,9%							

IULATIVE	TOTAL	(A + B)	34.9%

[C] CCS NOT EXPLICITLY CITED IN INDCs BUT KNOWN TO SUPPORT CCS								
Asian States	INDONESIA	1.6%	-29%	-41%	BAU	2030		
	KOREA	1.7%	-37%	0%	BAU	2030		
Europe (EU-28)	EUROPEAN UNION (EU-28)	10.3%	-40%	0%	1990	2030		
Umbrella Group	JAPAN	3.4%	-26%	0%	2013	2030		
	UNITED STATES OF AMERICA	15.3%	-26%	-28%	2005	2025		
	TOTAL	32.4%						
	CUMULATIVE TOTAL (A + B + C)	67.3%						

Source: MBonner, Dec 2015

- Countries must be encouraged to include CCS in the next wave of NDCs (access to affordable finance for projects may depend on it)
- CCS needs higher representation in developing country TNAs
- 10 countries cite CCS in INDCs represents a third of global emissions
- We know of countries that are strategically engaged in CCS they could represent > 65% of global emissions

Strong policy drives investment – to get CCS onto a similar curve to RES ~ a level playing field is essential

Data source: Bloomberg New Energy Finance as shown in IEA presentation "*Carbon Capture and Storage: Perspectives from the International Energy Agency*", presented at National CCS week in Australia, September 2014.

15 large-scale projects are operational ~ 40MtCO₂ pa

Source: Large Scale CCS Projects database, Global CCS Institute (2015)

Relative US DOE cost reduction targets and timing for second generation and transformational carbon capture technologies

www.globalccsinstitute.com

GLOBALCCSINSTITUTE.COM